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J. Phys. A: Math. Gen. 14 (1981) 2441-2457. Printed in Great Britain 

Vulcanisation of a binary mixture of long polymers 

A E GonzBlezt§/l and M Daoudtl  
t Center for Polymer Studies7 and Department of Physics, Boston University, 111 Cum- 
mington St., Boston MA 02215, USA 

Received 7 January 1981, in final form 6 April 1981 

Abstract. We consider a mixture of two polymers A and B which are compatible for certain 
values of the concentration and temperature. The polymerisation index of polymers A is 
NA while that of polymers B is NB; both NA and NB are considered to be much greater than 
one. In the general case, three different types of cross-links between the chains can be 
introduced: A-A, B-B and A-B. The cross-links can be chemical if, for example, we 
introduce certain amounts of vulcanising agents, or physical if, for instance, the monomers 
have the capability of forming hydrogen bonds when they touch. This last case leads to 
reversible gelation. 

The mapping of the gelation problem into a percolation problem iq the Bethe lattice- 
an approximation which is equivalent to that of Flory, Stockmayer and Gordon and 
coworkers-allows us to find, in a standard way, the critical surface, the gel fraction and the 
weight-average molecular weight of the finite molecules. In the case of physical cross- 
linking we plot, in addition, the gelation curves on a temperature-concentration diagram. 
We also discuss the phase separation and demixtion of the cross-linked system. 

1. Introduction 

Gelation and vulcanisation processes have been studied for a very long time (Flory 
1941, 1953, Stockmayer 1943, 1944). Formation of chemical bonds between linear 
polymer molecules, commonly referred to as cross-linking, may lead to the formation of 
infinite networks. Flory (1941,1953) considered this problem first, for a monodisperse 
polymer melt, while Stockmayer (1944) extended the treatment to a more realistic case 
with a dstribution of chain lengths, but always considering the same polymer species. 
The approximation of neglecting intramolecular interactions (‘loops’) was seen to hold 
well for the gel point and the several average polymerisation degrees of these undiluted 
polymer melts. Gordon and coworkers (Gordon 1962, Gordon and Malcom 1966, 
Gordon and Ross-Murphy 1975 and references therein) reformulated the method in 
terms of the theory of branching (‘cascade’) processes by Good (1948,1955,1960) and 
were able to consider some of the effects introduced by intramolecular (cyclisation) 
reactions (Gordon and Scantlebury 1966). It is now recognised that the Flory- 
Stockmayer-Gordon theory is analogous to the percolation problem on the Bethe 
lattice (Stauffer 1976). 
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We wish to consider here a percolation model for vulcanisation of long polymer 
chains, similar to the one proposed by Stauffer (1976) for gelation of monomeric units. 
The solution of the vulcanisation problem of a binary mixture of long polymers, which, 
to our knowledge, hasn’t been solved explicitly, will suffice to show the method. 

In 9 2 we will consider explicitly the vulcanisation problem of a binary mixture of 
polymers. In 9 2.1 we introduce, first, some definitions that will be used in the rest of the 
paper. In 9 2.2 some percolation quantities will be considered. In § 2.3, the mapping of 
the vulcanisation problem into a percolation problem on the Bethe lattice will be made 
and the approximation discussed. In 0 2.4 we will obtain the solution of the percolation 
problem in that lattice, including the critical surface, the gel fraction and the weight- 
average molecular weight of the finite molecules; we will see that by taking some 
suitable limits, we recover earlier results by Flory and Stockmayer. In 0 3 we consider 
the case of physical cross-linking and plot the resulting gelation curves on a tempera- 
ture-concentration diagram. Finally, in B4, we discuss the phase separation of our 
cross-linked binary mixture. 

2. The vulcanisation problem of a binary mixture of polymers 

2.1. Some definitions 

Let us consider a melt of two polymers A and B which are compatible for certain values 
of the concentration and temperature. Assuming that the monomers A and B have the 
same size?, each monomer A is then surrounded by z monomers B or/and A (including 
the two monomers A along the chemical sequence of the corresponding chain) and each 
monomer B is also surrounded by z other monomers. So, for simplicity, we may 
consider a three-dimensional infinite regular lattice of coordination number z, where 
each lattice site is occupied by a monomer A of a chain A or by a monomer B of a chain 
B (cf figure 1). The bonds of that lattice (not counting those between monomeric units 
followed one after the other along the chemical sequences) will serve as receptacles for 
the cross-linking agents A-A, B-B and A-B. We will introduce first some definitions: 

nA ( a s )  = number of chains A (B)  per site, 

NA (NB) = number of monomers per chain A (B) (NA, NB ’> 11, 
MA (MB) = molecular weight of monomeric units A (B) ,  

CA = concentration of monomers A = nA NA, 

CB = concentration of monomers B = n B  NB, 
(1) 

(2) 
with CA + CB = 1. 

XAA = number of cross-links A-A per site, 

t This is a simplifying assumption and not a restriction. The same results can be obtained with monomers A 
and B of different sizes. 
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XBB = number of cross-links B-B per site, 

XAB = number of cross-links A-B per site, 

X,,,,, = total number of cross-links per site = XAA + XBB + XAB, 

PAA = fraction of monomers A that are cross-linked with monomers A 

= 2XAA/nANA = 2 x A A / c A ,  ( 5 )  

= XAB/nANA = XAB/ CA, ( 6 )  

= ~ X B B /  n BNB = ~ X B B /  CB, 

= XAB/nBNB = XABf C B ,  

 PA^ = fraction of monomers A that are cross-linked with monomers B 

pBB = fraction of monomers B that are cross-linked with monomers B 

(7 ) 
p B ~  = fraction of monomers B that are cross-linked with monomers A 

(8) 
with 

PBA = (CAI Ce)pas. (9) 
( z  - 2 ) 4 A  = probable number of nearest-neighbour monomers A to a 

monomer A, not counting its two adjacent monomers along 
the chemical sequence of the chain. In the non-correlated 
case (T  = CO), we should have 

Figure 1. A two-dimensional representation of a melt of two polymers A (open circles) and 
B (full circles). The light bonds serve as receptacles for the existing cross-linking agents: 
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So, the probable number of nearest-neighbour monomers B to a monomer A is 

( 2  - 2 ) ( 1 - 4 A ) -  

( z  - 2 ) 4 B  = probable number of nearest-neighbour monomers B to a 
monomer B, not counting its two adjacent monomers along 
the chemical sequence of the chain. Also 

lim 4 B  = C B .  
T-CO 

The probable number of nearest-neighbour monomers A to a monomer B is then 

(2 - 2 ) ( 1  - 4 B ) .  
The number of contacts (bonds) A-A per site is given by 

inANA(2 - 2 ) 4 A ,  ( 1 0 )  

; n B N B ( z  - 2 ) 4 B ,  ( 1  1) 

n A N A ( z  - 2 ) ( 1  - + A )  = nBNB (2 - 2 ) (  1 - 4 B ) .  ( 1 2 a )  

while the number of contacts B-B per site is 

and the number of contacts A-B per site is 

The total number of contacts per site is then given by $(z  - 2 ) .  From relation ( 1 2 a )  and 
definitions ( 1 )  and (2), we obtain 

The average number of A-A possible bonds leaving a polymer A is 

uA.4 + 1 = N A ( Z  - 2 ) 4 A  UAA, ( 1 3 )  

the average number of A-B possible bonds leaving a polymer A is 

~ B A  + 1 = N A ( z  - 2)( 1 - 4,4) 2: UBA, ( 1 4 )  

with similar relations for uBB and UAB, where the index A is replaced by B and 
vice-versa. 

Now we will make the usual assumption that the cross-linking process occurs at 
random. This means that, for a certain typical configuration of the chains, each contact 
(bond) A-A is equally probable to be occupied by a cross-link A-A, with similar 
statements for contacts B-B and A-B. So, the probability for an A-A contact to be 
occupied by an A-A cross-link is 

p1= X A A / [ ( n A N A ( z  - 2 ) 4 A ) / 2 ]  = P A A / ( z  - 2 ) 4 A ,  (15) 

while the probability for a B-B contact to be occupied by a B-B crosslink is 

p2 = x B B / [ ( n B N B ( Z  - 2 ) 4 B ) / 2 1 =  P B B / ( Z  -2148, ( 1 6 )  

and the probability for an A-B contact to be occupied by an A-B cross-link is 

p3  =XAB/nANA(z - 2 ) ( 1 - 4 A )  = P A B / ( Z  - 2 ) ( 1 - 4 A )  

= XAB/nBNB (2 - 2 ) ( 1 -  4 B )  = P B A / ( z  - 2 ) ( 1 -  4 B  1. ( 1 7 )  
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It is worth noting that, in the usual vulcanisation problem of chains, each monomeric 
unit carries only one functional group capable of cross-linking. This would mean, in our 
model, that if a bond emanating from a certain monomer is occupied by a cross-linking 
agent, the other bonds emanating from the same monomer cannot be occupied. 
However, as the critical thresholds are very low (p?? = ~ / C T A A  << 1,  py? = ~ / C B B  << 1, 
pt;,”” = ~/(cTABcTBA)”’<< 1 as we will see below), and as we will be dealing with 
probabilities not far above the threshold, the occupancy of two bonds belonging to the 
same monomer is a very rare event. So, for a good range of values of the occupation 
probabilities (below and above the threshold), such that they are still much less than 
one, the results taking into account this complication in the model, are not expected to 
differ appreciably from those for which all the bonds of one type are equally probable to 
be occupied by a cross-linking agent of the corresponding type. 

2.2. The percolation of the chains 

As we can see, we have a bichromatic percolation problem of chains with three different 
types of bonds. Let 

Ns,l =total number of clusters per site of s chains A and t chains B, 

N, =total number of clusters per site of s chains A and 
cc 

1 = O  
any number of chains B = E’ Ns,l (s 3 I ) ,  

where the prime in the summation indicates that it doesn’t include the infinite cluster. 

NI = total number of clusters per site of t chains B and any number of 
m 

chains A = E’ Ns,t ( t  3 1) .  
s = o  

The probability that a chain A belongs to an infinite cluster is then given by 
CO 

~ ( p )  = 1 - ( l / n A )  E’ SN, = 1 - ( l /nA)  f’ S N ~ , ~ ,  ( 18 )  
s = l  s = l , t = O  

while the probability that a chain B belongs to an infinite cluster is 
m CO 

P B ( p ) = l - ( l / n B )  C’ tN l=l - ( l / nB)  E’ tNS,,. (19)  
t=1  s=O,1= l  

Let us define the percolation probability as the probability for any monomer to belong 
to an infinite cluster: 

P ( P )  = cApA(p)  + cBpB(p)  

and the gel weight-fraction as 
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In order to calculate other quantities such as the weight-average molecular weight of 
the finite clusters, we will introduce the ghost site (Reynolds et a1 1977, Marland and 
Stinchcombe 1977). Each monomer A is connected to the ghost site by MA bonds and 
each monomer B is connected to the ghost site by MB bonds?; each of these bonds can 
be occupied with probability h and empty with probability 1 - h. As a result, each chain 
A is connected to the ghost site by NAMA bonds and each chain B by NBMB bonds. In 
this way, the probabilities for a chain ( A  or B )  to belong to an infinite cluster become 

P A ( p ,  h )  = 1 - ( l / n A )  f’ sN,,,(l- h)‘”AMAcrNBMB), 
s = l , r = O  

W 

PB(p ,  h )  = 1 - ( l / n B )  1’ tNS,[(l  - h)(sNAMA+‘NBMB). (23) 
s = O , r = l  

So, the probability for a monomer to belong to an infinite cluster is now 

while the gel weight-fraction is 

We will now define the weight-average molecular weight of the finite molecules as 

2.3. The Bethe lattice approximation 

Let us consider an infinite Bethe lattice with sites A (chains A )  and sites B (chains B )  as 
in figure 2. Every site A is surrounded by UAA + 1 sites A and ITBA + 1 sites B, while 
every site B is surrounded by ITBB + 1 sites B and UAB + 1 sites A .  In this way, the 
functionality of the sites A is ITAA + CTBA + 2 = NA(Z - 2) >> 1, while the functionality of 
the sites B is ITBB + CTAB + 2 = NB(Z -2) >> 1. In that lattice we are going to have three 
different types of bonds (A-A, B-B and A-B), which can be occupied with prob- 
abilities p l ,  p z  and p 3 ,  respectively, and which will be denoted henceforth by p l ,  p z  and 
p3.  Also, each site A is connected to the ghost site by NAMA bonds and each site B is 
connected to the ghost site by NBMB bonds. 

Any possible path-through chains and bonds-between two given chains in the 
original lattice is represented as a path between two corresponding sites in the Bethe 

+ The fact that MA and ME need not be integers can be handled by considering instead two integers and 
A?B such that (A?A)/(A?B) is aperoximatelyequal to (MA) / (Ms) .  Then, we onlyneed to divide the expressions 
for the molecular weight by (MA)/(A?A) = (A?B)/(MB), getting the same results as in the text. 
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Figure 2. Bethe lattice with sites A (open circles) and sites B (full circles). In this example, 
every site A is surrounded by UAA + 1 = 2 sites A and UBA + 1 = 3 sites B, while every site B 
is surrounded by uBB + 1 = 4 sites B and UAB + 1 = 2 sites A.  p 1 ,  p z  and p 3  are the 
occupation probabilities of the bonds A-A, B-B and A-B, respectively. 

lattice; one can see that all closed paths are taken into account by mapping each chain 
into more than one site in the Bethe lattice. However, the mere fact of the existence of 
closed paths in the original lattice, requires us to map every chain to an infinite number 
of sites in the Bethe lattice; in this way, all possible paths (closed and non-closed) are 
represented an infinite number of times. We can see that an infinite path in the real 
three-dimensional lattice corresponds to an infinite path in the Bethe lattice, but a 
closed (finite) path in the real lattice also corresponds to an infinite path in the Bethe 
lattice. So, the assumption is made that, for systems containing units of high functional- 
ity, the measure of the infinite paths in the Bethe lattice which corresponds to closed 
(finite) paths in the original lattice is negligible compared with that corresponding to 
infinite paths in the real lattice. This allows us to say approximately that the infinite 
Bethe lattice percolates when the real system percolates. However, the assumption is 
stated and the issue is decided by the results obtained from that assumption. 

2.4. The solution of the percolation problem on the Bethe lattice. 

We will solve the problem using a method introduced by Stinchcombe (1974) and 
extended by Turban (1979) to a case similar to ours. Let 

R l ( h )  = probability that a site A does not belong to an infinite cluster in a branch 
starting with a bond pl,  given that such site is not connected to the ghost site. 

Rz(h)  =probability that a site B does not belong to an infinite cluster in a branch 
starting with a bond p z ,  given that such site is not connected to the ghost site. 

R 3 ( h )  =probability that a site B does not belong to an infinite cluster in a branch 
starting with a bond p 3 ,  given that such site is not connected to the ghost site. 

R4(h)  =probability that a site A does not belong to an infinite cluster in a branch 
starting with a bond p 3 ,  given that such site is not connected to the ghost site. 
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and 

and 

The expressions (39), (40) and (41), together with the definitions (36), (37), (38) and the 
recurrence relations (29) with h = 0, give the formal solution of the percolation problem 
of our binary mixture of chains in the Bethe lattice approximation. Below the 
percolation threshold RI = RZ = R 3  = R4 = 1, on physical grounds; this in turn means 
that P ( p )  and G ( p )  are zero. Above the percolation threshold, there is a non-trivial 
solution of the recurrence relations with the R 's generally less than one. The expression 
for the weight-average molecular weight below the threshold is explicitly given by 

(MW) 5 ( p ) = { WA (1 f pl)[NAMA - PZUBBNAMA + p3(UBA + 1 )NBMB + p h A B N A M A  

+PZp3(UBA+ 1)NBMB +PZPi(UBB +UAB + 1)NAMAl 

+ wB(1 +pZ)[N&B -PI~AAN&B +p3(UAB + 1)NAMA +p:UBANBMB 

+PlP3(UAB + 1)NAMA +PIP; (UAA f VBA f 1)N&BI}/{(1 -PlUAA) 

X ( 1 - ~ Z ~ B B ) - P ~ [ ~ A B + P 2 ( ~ B B + ~ A B  + 1)][gBA+Pl(flAA+UBA+ 111). 
(42) 

The critical surface is obtained as follows: assuming that we are above but very near 
the threshold, we may write 

R i = l - ~ i ,  Rz= 1 - 772, ( 4 3 4  b )  

R3 = 1-773, R4= 1 - 774, (43c, 4 
where the 77's are positive infinitesimals. On introducing the above equations into the 
relations (29) with h = 0, and keeping only first-order terms in 771,772, 773,774, E I ,  E Z  and 
c3 ( E ~  = p i  -pic), we get the set 

( 1 - ~ 1 c ~ A A ) ~ l - ~ l c ( ~ B A +  1h4=09  (44a) 

(1 - P Z ~ U B B ) T I Z - P Z ~ ( ~ A B  + 11773 = 0 ,  (44b) 

-p3c(UAA + 1)771+ 773-p3cUBA774 = 0 ,  (44c) 

-P3c(UBB + 1)r/Z-P3cUAB773+ 774 = 0 ,  ( 4 4 4  
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which has a non-trivial solution only when 

( 1  -PI C ~ A A ) (  1 - P Z P B B  ) 

- p : c [ c A B  + ~ ~ C ( ~ B B + ~ A B + ~ ) ] [ ~ B A + ~ ~ ~ ( ~ A A + ~ B A + ~ ) ] = ~ ,  (45 )  

which defines the critical surface. A look at the weight-average molecular weight below 
the threshold (equation (42)) shows that the critical surface could have been guessed 
directly: the critical surface is characterised by the divergence of (MW),(p),  which is 
obtained when the denominator is zero since the numerator remains regular. 

In order to proceed further we need to recognise that the maximum value of p l c  
(when p Z c  = p 3 c  = 0)  is ~ / u A A  = ~ / ( N A ( z  - 2)f$A) << 1. Similarly, the maximum values of 
p z C  and ~3~ are 

P ~ ? = ~ / U B B ' : ~ / ( N B ( Z - ~ ) ~ $ B ) < <  1 
and 

p?? = ~ / ( U A B U B A ) ~ ' ~ =  l / { ( Z  - ~ ) [ N A N B ( ~  -4~)(1-4~)]" '}<< 1. 

The critical surface then reduces to 

(46) 
As we are interested in the percolation quantities not far above the threshold (when we 
expect the approximation involving the loops not to be so strong), we can restrict 
ourselves to the case when p1,  p2  and p 3  are very small compared with unity. In this case 
the expressions for the weight-average molecular weight reduce to 

2 ( 1  - p l ~ u A A ) ( l  - P Z c U B B )  -p3cUABuBA E 0. 

(MW),(p) ={  WaPipz(2Ri - ~ ) ( N A M A R ? ~ ~ ) R P ~ + ' )  -PZUBBNAMA 

+ p3 UBANBMBR ~ A A ) R  +B +I) x R ~ ~ A A ) R  +B- 1 ) R  + 1)R PA + 1 ) 

x ReAe)RkuBA)) f W B P ~ P ~ ( ~ R ~ -  I ) ( N & ~ B R ~ ~ ) R ~ ~ ~ + ~ )  

+ PWABNAMA - u A A ~ B ~ B ~  ~ U A A  -1 )R * )R &CAB + 1 )R $ ~ B A  + 1 ) 

x R YAA+l)R * ) R p B ) R  )I/{[ WAPZR 1 (RI +p1- 1) 
-t W B P ~ R ~ ( R ~ + ~ : ! -  1 ) ] + [ ( 1  -p l~AAR"AA- ' )R~u~A' ' ) )  
x ( 1  - P 2 u B B ~  + B - ~ ) R  !jcAB+1) - p : u A B u B A ~  PA+')R pB +I) 

I1 (47) x RPB-')RPA-l)  

and 

(MW):(p) = [WA(NAMA -PZ~BBNAMA +P~UBANBMB) WB(NBMB - P I ~ A A  
2 NBMB + P ~ ~ A B N A M A ) I / [ ( ~  -pluAA)(1 - p 2 u B B )  -p3uAB%3A]. (48) 

To get the 77's we need to keep second-order terms in the expansion of the equations 
(29).  In this way we find 

( 1 - P 1 P A A )  v I - P iCuBAV4 = U, (49a) 

( 1  -PZcUBB)TZ-P2cflAB773 = U, (49b)  
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The second-order quantities U ,  U, x and y are not independent but satisfy the relation 
2 0 = PZcP3cUAAuABU + (1 - p l c u A A  - p 3 c u A B u B A ) u  

+ P Z C U A B ( ~  - P l c U A A ) x  + P Z c p 3 c ~ A B u B A Y .  (54) 

A substitution of the expressions (50)-(53) in (54) leads to the relation 

1 2 2 
ql = $ 2 P l c U A A ( l  - P 2 c u B B )  E1 + 2Plcp3c f lBBuABf lBAE2  

+ 4 P l c P 3 c u A B f l B A  ( 1  -P2cuBB ) E  31, ( 5 5 )  

where F = (1 - ~ ~ c u B B ) ~  + P 3 c u A B ( 1  - p l c u A ~ ) ,  By using equations (49) again, we get 

q Z  = ( ~ / F ) [ ~ ~ Z C P ~ C U A A ~ A B ( ~  - P ~ C U B B ) E I  

+ 2P2cP3cuBBuAB ( 1  - P i c a A A )  E 2  + 4 p 2 c p  :c&BUBA& 31, (56)  

(57) 

(58)  

773 = ( 1  / F ) [ ~ P ~ c U A A ( ~  - P Z C U B B ) ~ E  1 + 2 P : c u B B u A B u B A & 2  + 4 P : c u A B u B A ( 1  -P2cUBB )E319 

2 3 2  
774 = ( 1 I F )  [ 2 p  g c u A A u A B  ( 1 - P2cuBB ) E 1 + 2 p  3 c u B B u A B  ( 1 - p 1 ccAA)  2 + 4 p  3cUABuBAE 31. 

Now, the expression (48) for (MW); (p ) ,  very near the threshold, can be written as 

( M W ) ; ( & )  = - [WA(NAMA-P~~~BBNAMA + p 3 c u B A N a B )  + w B ( N $ M B  

- p 1 c U A A N B M B  + p 3  c u A B N A M A ) I /  [( 1 - PZCUBB b A A E  1 

f ( 1  - P l c U A A b B B E 2  + ~ P ~ C E ~ U A B ~ B A ] ,  (59)  

while, by using ( 5 3 ,  (56),  (57) and (58) ,  the expression (47) for ( M W ) , ( p ) ,  above but 
very near the threshold, becomes 

( M W ) Z ( & )  = (MW);(  - E ) .  (60) 

We know that below the threshold P ' ( p ) = G c ( p ) = O .  Above but very near the 
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threshold, the expression (40) for G ( p )  can be written as 

where H = (1 -plcuA~)~ +P3cUBA(1 -pzCg~B). The expression (39) for P > ( E )  may be 
obtained from this last relation by the substitutions WA -* CA and WB -* CB. 

Finally, we will use the relations (9), (13)-(17) in order to find the threshold, P > ( E ) ,  
G>(E),  (MW);(p), (MW);(e) and (MW):(&) as a function of measurable quantities. 
In this way, we obtain: 

(1 - PAACNA) (1 - PBB~NB ) - (CA/ CB )P IBCNANB = 0, (62) 
G’(AP) = [(~WA/F)(~ - P B B ~ N B ) ~ +  (~WB/H)(CA/CB)P?~BCNANB~NAAPAA 

+ [(2 WA/F)(CA/CB)P?~BCNANB f (2 W B / H ) ( ~  -PAACNA)~]NBAPBB 
+ [(4 wA/H)(cA/cB)PIBCNINB 
f (4 WB/F)(CA/CB)~P?~BCNAN~ IAPAB, (63) 

where now, F = (1 -PBB~NB)~+ (CA/CB)PABCNB(~-PAA~NA), H =  (~-PAA,NA)~+ 
~ A B ~ N A ( ~  -PBB~NB), and where &AA = PAA = PAA - P A A ~ ,  APBB = PBB - P B B ~  and 
APAB = PAB - P A B ~ .  The expression for P’(Ap) is obtained from this last relation by 
making the substitutions W A  -* CA and W B  -* CB. The relations (48), (59) and (60), for 
the weight-average molecular weight of the finite molecules, now become 

(MW);(p) = {wANAMA[1 -pBBNB +PABNB(MB/MA)l 

As we can see, all these results are independent of the correlations existing in the 
system. The expressions (63), (65) and (66) indicate that the exponents p, and yp ,  
describing the behaviour near the threshold, are both equal to the mean-field value one, 
which is a consequence of our Bethe lattice approximation. 

(i) One polymer system with two different lengths. 
In this case MA =ME = M, and W A  and W B  coincide with CA and CB, respectively. 

We now consider some particular cases: 
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Also, we have only one type of cross-linking agent. This in turn means that X A A ,  XBB 
and XAB are not arbitrary but satisfy the relations 

X A A  number of contacts A-A per site 
- 

X,,,,, 
XBB 
X,,,,, 
X A B  

X,,,,, 

total number of contacts per site ’ 
number of contacts B-B per site 
total number of contacts per site’ 

number of contacts A-B per site 
total number of contacts per site’ 

-- - 

-- - 

So, on using expressions (lo), (11) and (12a), we obtain the relations 

xAA = $c .+~~AP = 3cb, 
X B B  = &B4BP = $C’,P, 

X A B  = cA(1-4A)P = CACBP, 

because the system is not correlated in this case. Here p is the fraction of monomers 
that are cross-linked. Introducing these last relations into (3, (6), (7) and (8) leads to 

The expression (62) for the threshold becomes 

1 - pc (CANA + CBNB) = 0,  (74) 

which coincides with an expression derived first by Stockmayer (1944), up to our 
approximation of long chains. The expression (64) for (MW):(p)  is now 

which is Stockmayer’s expression, up to the same approximation. Finally, the equation 
(63) for G’(Ap), above but very near the threshold, can be written as 

an expression that can be derived from a formula first quoted by Flory (1953, p 380). 

(ii) One monodisperse polymer system 

In this case NA = NB = N also, and the relation (74) gives 

1 -pcN = 0,  (77) 

( M W ) : ( ~ )  = M N ~  - p ~ )  (78) 

and we recover a well known formula by Flory (1941, 1953). Also, in this case, 

and 

G’(Ap) = 2NAp. (79) 
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It is interesting to note that the same results can be obtained from equations (62), (63) 
and (64) by making WA = 1 ,  NA = N, MA = M, PAA = p, PAB = pBB = 0, as it should be. 

3. Physical cross-linking and the gelation curves 

An interesting example of physical cross-linking concerns some polymeric systems, 
such as swine skin gelatin, where the monomers are capable of forming hydrogen bonds 
when they touch (Tanaka et a1 1979, Ruiz-Azuara et a1 1980, Coniglio et a1 1979, 
Gonzalez and Muto 1980). For the case of a binary mixture of such polymer systems, 
one has to introduce, besides the Van der Waals interactions UAA, UBB and UAB 
between nearest-neighbour monomeric units, the hydrogen bonding directional inter- 
actions EAA, EBB and EAB. In this way, the energy of a bond A-A is 

- UAA (Van der Waals) with weight gAA 

= I -EAA (bonding energy) with weight 1 -gAA,  

the energy of a bond B-B is 

- UBB (Van der Waals) with weight gBB 

-EBB (bonding energy) with weight 1 - gBB,  
- € - = I  

- € A B  = ( 
and the energy of a bond A-B is 

- UAB (Van der Waals) with weight gAB 

- EAB (bonding energy) with weight 1 - gAB. 

The energies Eare generally one order of magnitude greater than the energies U. A 
pair of nearest-neighbour monomers is hydrogen bonded (cross-linked) when the 
interaction energy is - E .  The probability that a pair of nearest-neighbour monomers 
i-j (i, j = A ,  B )  is hydrogen bonded (Coniglio et a1 1979, Gonzalez and Muto 1980) is 

p , ( T )  = (1 -gij)  e 'PEJ/[g i i  e(puJ+ ( 1  - g l j )  e(PEJ1, (80) 

where p = 1/ kT and k is the Boltzman constant. In this way, the numbers of cross-links 
A-A, B-B and A-B per site are not arbitrarily introduced from outside but they are 
fixed by the parameters E - U and g ,  the concentration and temperature. On using 
expressions ( l o ) ,  ( 1 1 )  and (12a) ,  these numbers are calculated as 
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where we have assumed, in the last equality, that the correlations in the system are 
weak. In this way, the equation for the gel point transforms into 

which is the desired relation between concentration and temperature. In figure 3 we 

(a)  

0 Con c en t ra t i o n CA 1 

1 

( b )  
I 

1 Concentration CA 0 

Figure 3. The gelation curves separating the gel phase (below) from the sol phase (above). 
In I, only crosslinks A-A are present, in 11, only crosslinks E-E are present, in 111, only 
crosslinks A-B are present, and in IV, all three types of crosslinks are present. In ( a )  the 
parameters have been chosen such that pae(T) < PAA( T) - PBB(T), while in ( b )  we have the 
inequality reversed. 
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have plotted the gelation curves, on a temperature-concentration diagram, for two sets 
of values of the parameters. In (a )  we have chosen the parameters such that ~AB(T) < 
p a A (  T) - PBB (T), while in ( b )  we have the inequality reversed. In each of the figures we 
plotted the curves for which we have: (I) The onset of formation of an infinite molecule 
as if it were formed by cross-links A-A only (the curve is obtained by making PBB and 
pAB equal to zero in equation (88)), (11) the onset of formation of the infinite molecule 
made by cross-links B-B only (PAA and PAS equal to zero), (111) the onset of formation 
of the infinite molecule made by cross-links A-B only ( p A A  and pBB equal to zero), and 
(IV) the onset of formation of the infinite molecule made by all types of cross-links (the 
full equation (88)). As a general feature, the curve IV is always above the other three 
curves, which means that it is always easier to have an infinite network made of all three 
types of cross-links at a given concentration. The curves I and I1 are well known in the 
studies of gelation in solvents by means of hydrogen bonds between the monomeric 
units composing the polymers (Tanaka et a1 1979, Coniglio et a1 1979, Ruiz-Azuara er 
a1 1981, Gonzalez and Muto 1980). In our case of a binary mixture, the polymer not 
capable of forming hydrogen bonds (polymer B in curve I and polymer A in curve 11) 
acts as a solvent as far as the gelation problem is concerned. 

4. The phase separation 

In the preceding discussion, we implicitly assumed a complete mixing of the species. 
We expect this hypothesis to hold for high temperatures. When we lower the tempera- 
ture, however, this good miscibility breaks down and a segregation effect appears, as 
usual in two-component systems. Two different cases are to be considered, depending 
on the nature of the links between the chains. 

(i) Chemical cross-links can be considered as ‘quenched’ cross-links at usual 
temperatures. In this case, the experimental procedure is important: cross-linking the 
system and then lowering the temperature does not lead to the same result as doing the 
same operation in the reverse order. The cooling down of the cross-linked system has 
been studied very recently by de Gennes (1979): Due to the presence of cross-links, the 
phase separation cannot occur well above the gel point, though there appear micro- 
domains of A ( B )  rich phases. The size of these microdomains depends on the distance 
to the gel point. For more details the reader is referred to this reference. 

(ii) Physical cross-links, on the other hand, can be considered as ‘annealed’ cross- 
links. They have a finite lifetime, and their number is fixed by monomer concentration 
and temperature. In this case we expect the phase separation to occur in the thermo- 
dynamic limit (note, however, that the equilibrium state may be reached in a very long 
time). Then, we expect the phase diagram to exhibit, besides the gelation curve 
discussed above (figure 3), a phase separation curve, and to be able to see the gelation 
curve at equilibrium, only outside the phase separation curve. The demixtion problem 
can be described by the usual Flory-Huggins theory (Flory 1953, Huggins 1942a,b, 
Joanny 1978), with the parameters U, (i ,  j = A  or B )  replaced by U, (1 -p i i (T) )  + 
Eiipii(T). Depending on the values we choose for the different parameters, the relative 
position of the gelation and phase separation curves may vary considerably. Let us 
mention here the possibility of getting a higher order critical point when the gelation 
curve goes through the critical point of the phase separation curve (Coniglio and 
Lubensky 1980). Then, for this point, we have two lengths (the correlation length for 
the fluctuations in the concentration and the connectedness length of the gelation 
problem) which simultaneously become infinite. 
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